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In order to gain insight into the hydraulics of rotating-channel flow, a set of initial-
value problems analogous to Long’s towing experiments is considered. Specifically,
we calculate the adjustment caused by the introduction of a stationary obstacle
into a steady, single-layer flow in a rotating channel of infinite length. Using the
semigeostrophic approximation and the assumption of uniform potential vorticity,
we predict the critical obstacle height above which upstream influence occurs. This
height is a function of the initial Froude number, the ratio of the channel width
to an appropriately defined Rossby radius of deformation, and a third parameter
governing how the initial volume flux in sidewall boundary layers is partitioned. (In
all cases, the latter is held to a fixed value specifying zero flow in the right-hand (facing
downstream) boundary layer.) The temporal development of the flow according to
the full, two-dimensional shallow water equations is calculated numerically, revealing
numerous interesting features such as upstream-propagating shocks and separated
rarefying intrusions, downstream hydraulic jumps in both depth and stream width,
flow separation, and two types of recirculations. The semigeostrophic prediction of the
critical obstacle height proves accurate for relatively narrow channels and moderately
accurate for wide channels. Significantly, we find that contact with the left-hand wall
(facing downstream) is crucial to most of the interesting and important features. For
example, no instances are found of hydraulic control of flow that is separated from
the left-hand wall at the sill, despite the fact that such states have been predicted
by previous semigeostrophic theories. The calculations result in a series of regime
diagrams that should be very helpful for investigators who wish to gain insight into
rotating, hydraulically driven flow.

1. Introduction
Robert Long’s classical experiments, initially carried out in the 1950s (Long 1954)

and later extended (Long 1970; Houghton & Kasahara 1968; and Baines & Davies
1980) form a cornerstone of hydraulic theory. In the original laboratory version of
the experiment an obstacle is towed at a fixed speed through a channel of shallow
fluid initially at rest. Numerical versions of the experiment place a fixed obstacle in
the path of an initially steady, uniform flow, which is equivalent to the original set-up
provided frictional effects are negligible. The outcome of the experiment for a single
layer with a free surface depends on the Froude number F0 = v0/

√
gd0 based on
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Figure 1. Regime diagram for Long’s experiment with a homogeneous, shallow flow (Long 1954).
The initial fluid depth is given by d0, the obstacle height by hm and the towing speed by v0. (Redrawn
from Baines & Davies 1980 figure 2.)

the initial depth d0 and velocity v0 of the moving stream and on a non-dimensional
obstacle height hm/d0. Figure 1 shows the different steady regimes that develop over
the obstacle and the transients that establish these regimes. For a given value of F0

the outcome depends largely on whether hm/d0 exceeds a critical height (given by
curve BAE). Beyond this height the obstacle partially blocks the approaching flow
through the generation of a bore that moves upstream. The steady flow left behind
has reduced volume transport and is hydraulically critical (hydraulically controlled) at
the sill of the obstacle. For sufficiently large hm/d0 (given by the curve BC) the flow is
completely blocked. Other boundaries can be calculated such as the curve AD, which
separates flow having hydraulic jumps on the downslope of the obstacle from those
that do not. The derivation of the curves forming the regime boundaries and examples
of the development of the various flows within appear in Baines (1995, chap. 2).

Diagrams such as figure 1 and its generalizations in multi-layered flow are won-
derful tools for developing knowledge and intuition about hydraulic jumps, bores,
upstream influence, hydraulic control, and hydraulics in general. Naturally, a similar
experiment carried out in a rotating channel would be of great use to investigators of
deep strait and sill flow in the ocean, where the Coriolis effects can be important. A
number of steady theories describing such flows exist, including benchmark papers by
Whitehead, Leetmaa & Knox (1974) and Gill (1977) and further studies by Borenäs &
Lundberg (1986), Pratt & Armi (1987, 1991), Baines & Leonard (1989), Dalziel (1990),
Killworth (1992, 1994, 1995), Killworth & McDonald (1993), Borenäs & Whitehead
(1998), Pratt & Chechelnitsky (1998) and others reviewed by Pratt & Lundberg (1991).
As valuable as they have proven to be, such theories lack information about how hy-
draulically controlled flows are established, how upstream influence is exercised, how
rotation influences bores and hydraulic jumps, and whether traditional shock joining
can be performed across rotating jumps and bores. Also, laboratory experiments on
rotating sill flows (Shen 1981 and Pratt 1987) have raised doubts about whether
certain types of predicted flows can actually be realized. Unfortunately, performing
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something like Long’s experiment in a rotating laboratory channel is technically dif-
ficult. In addition, traditional numerical models have been unable to handle all of
the special problems, including separation of the stream from the channel sidewalls
and shock formation, that inevitably occur in interesting regions of parameter space.
Pratt (1983) was successful in obtaining some numerical solutions, but the range of
parameters covered was severely limited by numerical difficulties. However, Helfrich,
Kuo & Pratt (1999) recently presented a code based on a numerical scheme used by
Schär & Smith (1993) that overcomes the difficulties just described. Our work has
been made possible by development of this code.

The aim of this work has been to carry out numerical simulations of Long’s
experiment in a rotating channel. The presentation of these results is framed around
prediction of the final steady flow based on the semigeostrophic approximation.
The development of this approximation for shallow-water flow and the resulting
constraints are reviewed in the next section. The semigeostrophic, shallow-water
equations are then used (§ 3) to solve for the threshold obstacle heights required to
exert upstream influence (analogous to BAE of figure 1) or to induce flow separation
from the channel sidewalls. In § 4 we present numerical solutions based on the
full shallow-water equations describing the time-dependent adjustment and the final
steady state in the vicinity of the obstacle.

Aside from the insight we hope the reader will gain from browsing through our
regime diagrams, the numerical solutions provide a vehicle for examining a number of
long-standing mysteries concerning the hydraulics of rotating channel flow (§§ 4 and
5). To start with, we are able to explore the possibility of hydraulic control of a flow
that is completely separated from one of the sidewalls of the channel. This situation
is predicted by steady theory but has been difficult to reproduce in the laboratory.
Although we create conditions favourable for hydraulically critical sill flow to occur,
the subsequent sill flows revert to an attached state. This result suggests that it is
difficult, if not impossible, for a separated flow to be hydraulically critical. Also we
discover and map out different forms of shocks, rarefactions, and recirculations over
much broader parameter ranges than have been possible in the past. An important
new type of shock is the transverse hydraulic jump, a stationary and abrupt change in
width of the stream. This was observed in a laboratory experiment by Pratt (1987) but
has not been the subject of any further verification or study. The jump occurs where
a separated and hydraulically supercritical flow abruptly widens to a subcritical and
attached state. We discuss the momentum balance for this jump and investigate the
possibility of performing shock-joining calculations. Along these lines, we also create
conditions favourable for the formation of a moving transverse shock, in which the
width of separated current suddenly increases from one value to another. A family of
shocks having this property was predicted by Nof (1984) and we find similar examples.
Another novel feature that arises in the numerical solutions is a rarefying intrusion
that forms when a separated stream running along a sidewall collides with an obstacle
of sufficient height. Some of the fluid passes over the obstacle and some is diverted
to the opposing sidewall forming an intrusion. The result is a new mechanism for
upstream influence. In addition to these interesting features, the numerical solutions
allow us to identify breakdowns in uniform potential vorticity and/or semigeostrophic
theory, the bases for most models of deep overflows.†

† But not all: Pratt & Armi (1987) and Killworth (1992) developed models for sill flow with
non-uniform potential vorticity. Also, Killworth (1994, 1995) and Killworth & McDonald (1993)
have developed bounds governing the transport of deep overflows of arbitrary potential vorticity.
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Figure 2. Definition sketch of rotating channel flow showing (a) attached flow,
(b) separated flow, (c) side view.

2. Predictions based on semigeostrophic theory
Consider a channel of rectangular cross-section, aligned in the y-direction, rotating

at constant angular speed f/2, and containing a shallow, inviscid, homogeneous fluid.
The fluid may have finite depth across the entire channel, as shown in figure 2(a) or
may be separated from one of the sidewalls, as in figure 2(b). Motion within the fluid
is assumed hydrostatic and therefore governed by the two-dimensional shallow-water
equations:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = −g ∂d

∂x
, (2.1)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = −g ∂d

∂y
− g ∂h

∂y
, (2.2)

∂d

∂t
+
∂(ud)

∂x
+
∂(vd)

∂y
= 0. (2.3)

The coordinate system and variable definitions are given in figure 2(a–c).
From (2.1)–(2.3) it follows that the potential vorticity

f + ∂v/∂x− ∂u/∂y
d

(2.4)

is conserved following fluid columns. The potential vorticity is sometimes denoted
f/D∞, where D∞, the potential depth, is the thickness to which a fluid column with a
particular potential vorticity would have to be stretched in order to remove its relative
vorticity (∂v/∂x−∂u/∂y). We will deal only with flow having initially uniform potential
vorticity, and therefore uniform D∞. This assumption is desirable from the standpoint
of making comparisons with earlier rotating hydraulic theories (e.g. Whitehead et
al. 1974 and Gill 1977), nearly all of which are based on the same assumption.
In addition, the restriction limits the range of (already complex) behaviour and
number of corresponding parameters. For example, uniform potential vorticity flows
are known to have a boundary layer structure, the boundary layer thickness being
given by Ld =

√
gD∞/f, the Rossby radius of deformation based on D∞. This scale

is independent of the local depth and may therefore be taken as the only horizontal
length scale, aside from those imposed by geometry. Further, the restriction to uniform
D∞ has the important consequence of eliminating potential vorticity waves from the
flow, at least in the early stages of evolution. Although non-uniformities in D∞
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can develop due to shock formation or due to the weak dissipation present in the
model, we observe no effects that could be attributed to potential vorticity waves. In
particular, the critical control due to Rossby waves (discussed by Haynes, Johnson &
Hurst 1993 and Pratt & Armi 1987) does not arise.

In what follows, d and h will be non-dimensionalized by D∞, x by Ld, v by (gD∞)1/2,
y by the along-channel length scale L imposed by the topography, and time t by
L(gD∞)−1/2. Use of these scales in (2.3) then suggests scaling of u by (gD∞)1/2 (Ld/L).
If L is significantly larger than the cross-channel scale Ld, so that the horizontal
aspect ratio δ = Ld/L � 1, then the flow is nearly parallel (u � v) and, generally
speaking, ∂/∂x� ∂/∂y. Under these conditions the y-velocity is nearly in geostrophic
balance:

v =
∂d

∂x
, (2.5)

where we now regard v, d, x, etc. as non-dimensional variables subject to the above
scaling. The longitudinal velocity u is generally not geostrophic and we therefore refer
to Ld/L→ 0 as the ‘semigeostrophic’ limit. Also, the potential vorticity in this limit is

1 + ∂v/∂x

d
= 1. (2.6)

Our predictions of threshold obstacle heights are based on these simplifications.
The cross-sectional structure of the semigeostrophic flow can be determined from

∂2d

∂x2
− d = −1, (2.7)

obtained by eliminating v from (2.5) and (2.6). For the present, assume that the flow
is attached, meaning that d > 0 across the entire channel width −w/2 6 x 6 w/2.
Following Gill (1977) a convenient representation of the solution of (2.7) is then

d(x, y, t) = 1 + d̂(y, t)
sinh (x)

sinh ( 1
2
w)

+ (d̄(y, t)− 1)
cosh (x)

cosh ( 1
2
w)
, (2.8)

and the associated geostrophic velocity is

v(x, y, t) = d̂(y, t)
cosh (x)

sinh ( 1
2
w)

+ (d̄(y, t)− 1)
sinh (x)

cosh ( 1
2
w)
. (2.9)

In these expressions, the quantities d̂ and d̄ represent half the difference and sum,
respectively, of the depth along the sidewalls:

d̄ = 1
2
[d( 1

2
w, y, t) + d(− 1

2
w, y, t)] (2.10)

and

d̂ = 1
2
[d( 1

2
w, y, t)− d(− 1

2
w, y, t)]. (2.11)

Using (2.9) these can also be related to the average and difference of the wall velocities:

v̄ = 1
2
[v( 1

2
w, y, t) + v(− 1

2
w, y, t)] = T−1d̂ (2.12)

and

v̂ = 1
2
[v( 1

2
w, y, t)− v(− 1

2
w, y, t)] = T (d̄− 1), (2.13)

where

T = tanh ( 1
2
w).

A consequence of semigeostrophy, first recognized by Gill (1977), is that separation
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of the flow caused by the vanishing of d cannot occur at an interior point of the
stream. Suppose that (x0, y0) is the first such point for this vanishing to occur, so
that d(x0, y0) = 0 but d > 0 in a small x-neighbourhood of (x0, y0). Then, provided
that d is twice differentiable with respect to x, (∂2d/∂x2)(x0 ,y0) > 0 in violation of
(2.7). One consequence is that the vanishing of d at a section where d is initially
non-zero all across the channel must occur first along a sidewall. We will refer to
the subsequent detachment of the flow from the sidewall, and formation of a free
edge, as flow separation. This type of separation should be distinguished from the
streamline separation coincident with a stagnation point along a wall in the presence
of non-zero depth.

In the limit of strong rotation (w →∞), (2.8) becomes

d = 1 + [d(w/2, y, t)− 1]e(x−w/2) + [d(−w/2, y, t)− 1]e−(w/2+x) + O(e−w) (2.14)

and thus the solution takes on a boundary layer structure with the sidewall depths
decaying to the interior value (unity) over the Rossby radius of deformation (also
unity).

The evolution of a semigeostrophic flow from given initial conditions may be
calculated by substituting (2.8) and (2.9) into (2.1) and (2.3) and solving the result-

ing hyperbolic equations for the coefficients d̄(y, t) and d̂(y, t) using the method of
characteristics. As shown by Pratt (1983), the characteristic speeds are given by

c± = T−1d̂± d̄ 1/2[1− T 2(1− d̄)]1/2. (2.15)

Accordingly, a Froude number

Fd =
T−1d̂

d̄1/2[1− T 2(1− d̄)]1/2
(2.16)

may be defined such that the flow is locally subcritical for Fd < 1 (implying that sig-
nals can propagate in both ±y-directions), supercritical for Fd > 1 (implying that both
signals propagate in the same direction), and critical for Fd = 1 (implying the speed
of one of the modes is zero).

In the limit of weak rotation, w → 0 (or T → 0), c± reduce to the familiar long
gravity wave speeds v ± d1/2. In the opposite limit, w → ∞ (or T → 1), these speeds
become

c+ = v(w/2, y, t) + 1 = d(w/2, y, t) (2.17)

and

c− = v(−w/2, y, t)− 1 = −d(−w/2, y, t). (2.18)

As suggested by (2.14) the waves have now separated into two independent Kelvin
waves, each trapped against a sidewall. For the wave trapped on the wall at x = w/2,
which will be called the right-hand wall, the characteristic speed is positive provided
the depth at that wall is non-zero (the flow is attached). Similarly, the left-hand wall
(x = −w/2) wave has negative speed for non-zero left-hand wall depth. All flows of
finite depth in infinitely wide channels are therefore subcritical in the sense that the
two long waves propagate in opposite directions. In order for critical flow to form it
is necessary for the flow to separate from one of the walls or for the channel width
to be less than several Ld, forcing the Kelvin waves to overlap.

When the flow separates from one of the sidewalls, the above expressions for the
wave speeds remain valid but the character of the waves is altered. The Kelvin waves,
which have zero u in the limit of small amplitude, become frontal waves, which have
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finite u (Stern 1980). In addition, the dependent variables change from d̄ and d̂ (which
become equal for separated flow) to d̄ and we, the latter denoting the separated width
of the current (figure 2b).

For steady, semigeostrophic flow with uniform potential vorticity, solutions for
flow passing over obstacles or through contractions in the channel width can be
computed from a known upstream condition by conserving volume flux and energy
(Bernoulli function). A common form of the conserved energy is the average B̄ of the
semigeostrophic Bernoulli functions v2/2 + d+ h on the two sidewalls, or

B̄ = 1
2
[T−2d̂ 2 + T 2(d̄− 1)2] + d̄+ h (2.19)

in view of (2.12) and (2.13). In addition, the volume transport Q =
∫ w/2
−w/2(vd)dx must

be conserved, and it can be shown using (2.5), (2.10), and (2.11) that

Q = 2d̄d̂. (2.20)

For detached flow the equations governing steady flow can be obtained by replacing

d̂ by d̄ and T by Te = tanh (we/2) in (2.19) and (2.20).

3. Initial conditions and the critical obstacle height
3.1. Parameters and initial conditions

A number of complications are introduced in the rotating version of Long’s ex-
periment. First, towing an obstacle along the channel at a fixed speed through an
initially stationary fluid is no longer equivalent to introducing a stationary obstacle
in a moving stream of the same speed. In the first case the free surface is horizontal;
in the second it has a cross-stream, geostrophic tilt. We have chosen to perform the
second version of the experiment as the upstream states seem more meaningful for
ocean applications. Thus, the obstacle will be introduced into a steady current that is
uniform in y but that varies with x. This current will have uniform potential vorticity
and will thus have the form given by the velocity and depth profiles (2.8) and (2.9).

A second complication is the introduction of three new length scales (Ld, D∞, and
the channel width), leading to two additional dimensionless parameters. There are
now four parameters in all and these may be picked in a variety of ways. To maintain
continuity with Long’s original experiment, we continue to use the Froude number
of the initial flow, defined by (2.16), and the dimensionless obstacle height hm. In
addition, we select w (the dimensional channel width divided by Ld), which determines
the overall importance of rotation. A fourth parameter could also be introduced, but
this would lead to an overwhelmingly large parameter space to explore. In Gill’s
(1977) formulation the fourth parameter (his ψi) governs the relative amounts of
volume flux contained in the right- and left-hand wall boundary layers. As a starting
point, we will fix the fourth parameter by requiring that the total volume flux of the
initial flow is contained in the left-hand wall boundary layer. This assumption can
be motivated by imagining that the initial flow has been set up as the result of a
dam break experiment in which motion is triggered by a Kelvin wave propagating
upstream along the left-hand wall. This situation is now described in more detail.

Suppose that the initial stream in which the obstacle is to be introduced has been
set up by breaking a dam, as suggested in figure 3. The dam lies at y = 0 and the
initial depth is zero for y > 0. Behind the dam (y < 0) lies fluid that is at rest and that
therefore has dimensional depth D∞. Far from the dam in the negative y-direction,
the channel broadens into wide reservoir. If the dam is destroyed, a positive flow is set
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Figure 3. Sketch illustrating the establishment of the flow in the channel after a dam break. The
final steady current is lies along the ‘left’ wall in the infinite upstream reservoir. (a) Before dam
break, (b) after dam break.

up in y < 0 by a Kelvin wave that moves away from the original dam (Helfrich et al.
1999). Upon entering the wide reservoir, this wave becomes trapped to the left-hand
wall (facing downstream) as indicated in figure 3(b). Hence, the current emanating
from the reservoir is trapped within a distance Ld of this wall and the fluid near the
right-hand wall in the reservoir remains stagnant. In the narrower section of channel
near the dam, moving fluid may exist across the entire width. Although the reservoir
will not appear explicitly in our numerical calculations, we will imagine that it exists
far upstream of the boundaries of our numerical domain, and that the initial flow
emanating from the reservoir is trapped to the left-hand wall.† We now show how
this assumption allows reduction of the number of independent parameters from four
to three (Fd, hm, and w).

The procedure for specializing the initial conditions to give zero approach flow
along the right-hand wall of the hypothetical reservoir is based on conservation of
energy along that wall. Since the flow along the reservoir’s right-hand wall is stagnant,

† When the initial flow is attached to both sidewalls, a gradual upstream widening of the channel
will result in diversion of all the volume transport to the left-hand boundary layer. When the initial
flow is separated from the left-hand wall it can be shown, however, that the current will remain
separated as the channel widens. In this case, a combination of width and bottom elevation changes,
with possible hydraulic transitions, may be necessary to provide a link to the hypothetical reservoir.
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the value of the Bernoulli function there is unity (dimensionally gD∞), and thus

v2
0(w/2)

2
+ d0(w/2) = 1,

where the ( )0 denotes initial values. If (2.10)–(2.13) are used to write this relation in

terms of d̄ and d̂ the result may be expressed in the non-dimensional form

[(d̂0/T )− T (1− d̄0)]
2

2
+ d̄0 + d̂0 = 1. (3.1a)

To fix the initial conditions for given Fd and w the values of d̄0 and d̂0 must be
computed. Once known, these two quantities completely determine the initial depth
and velocity profiles through (2.8) and (2.9). Equation (3.1a) provides one equation

for d̄0 and d̂0 while (2.16) provides a second. If d̂0 is eliminated between these two
relations the following equation for d̄0 is obtained:

1
2
{Fdd̄1/2

0 [1−T 2(1− d̄0)]
1/2−T (1− d̄0)}2 + d̄0 +FdT d̄

1/2
0 [1−T 2(1− d̄0)]

1/2 = 1. (3.1b)

It may turn out that the initial flow is separated from the left-hand wall of the

channel, in which case the above calculation will give d̄0 < d̂0. In this situation, the
parameter T in (3.1b) must be replaced by the variable Te0 = tanh (we0/2), where we0
is the initial width of the separated current. The initial condition is now specified by

the value of d̄0 (now equal to d̂0) and Te0, and both are related by

d̄0 =
F2
d (1− T 2

e0)

T−2
e0 − F2

dT
2
e0

, (3.2a)

which follows from (2.16). Substitution of this relation into (3.1b) results, after some
rearrangement, in

(F2
d − 1)2

2
+ (1− F2

dT
4
e0)(2F

2
d − F2

dT
2
e0 − T−2

e0 ) = 0. (3.2b)

The procedure is to first solve (3.2b) for Te0 and then calculate the corresponding
value of d̄0 from (3.2a).

One consequence of the assumption that the volume flux in the initial flow is fed
from the reservoir’s left-hand boundary layer is that separated initial flow cannot
be subcritical. To prove this result, write (3.2b) in the form 1

2
(1 − F2

d )2 + ab = 0,

where a = (1 − F2
dT

4
e0) and b = (2F2

d − F2
dT

2
e0 − T−2

e0 ), and suppose that the initial
flow is subcritical (F2

d < 1). Then as T 2
e0 varies over its possible range [0, 1] a varies

monotonically from unity to (1 − F2
d ), whereas b varies monotonically from −∞ to

(F2
d − 1), so that ab varies from −∞ to −(1− F2

d )2. Hence ab does not cross the value
− 1

2
(1− F2

d )2 required to satisfy equation (3.2b).

3.2. The critical obstacle height

It is anticipated that only values of hm greater than some critical value hc will lead to
upstream influence: permanent alteration of the upstream flow. In Long’s experiment
the physical argument on which hc is based involves the transport Q and energy
(Bernoulli constant) B of the initial flow. Imagine a steady flow passing over an
obstacle of height hm and having the same values of Q and B as the initial state under
consideration. Then there is a maximum hm for which this flow has sufficient energy B
(at the given Q) to surmount the crest. It can be shown from steady hydraulic theory
that this maximum hm is also the height required to render the sill flow critical. If
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hm exceeds the maximum allowable value, the values of B and/or Q must be altered
in order to allow the flow to continue and this implies generation of an upstream
disturbance that alters the values of Q and B. Thus, the predicted hc for given initial
Q and B is that height for which Q and B would, in a steady state, produce critical
sill flow. An application of the same principles (with the upstream state now specified
by Fd and w) results in a prediction of hc in the rotating case.

Consider a steady flow with upstream values d̄ = d̄0 and d̂ = d̂0 that becomes critical

(d̄ = d̄c and d̂ = d̂c)at the crest (h = hc) of the obstacle. (Note that d̄c and d̂c play a
similar role to Q and B in the example of the previous paragraph.) Conservation of
mass (2.20) requires that

d̂0d̄0 = d̂cd̄c. (3.3)

Together with the condition of criticality at the sill (Fd = 1 in 2.16), (3.3) implies that

d̄4
c +

1− T 2

T 2
d̄ 3
c − T−4(d̂0d̄0)

2 = 0. (3.4a)

This equation determines d̄c given the upstream/initial quantities d̂0 and d̄0. The value

of d̂c then follows from (3.3). Once d̄c and d̂c have been found it must be determined

whether or not the flow at the sill is separated. If d̄c > d̂c the flow is non-separated

and one may proceed to the next step, as described below. If d̄c < d̂c the flow at
the sill is separated from the left-hand wall, and (3.4a) must be revised by setting

d̄c = d̂c = (d̂0d̄0)
1/2 and T = Tec = tanh(wec/2), where wec is the separated width of

the flow at the sill. Substitution into (3.4a) then yields a formula for Tec:

T 2
ec =

(d̂0d̄0)
1/2

1− (d̂0d̄0)1/2
. (3.4b)

In either case the properties of the critical flow at the sill are known.
The critical sill height hc can now be computed by equating the energy at the

sill with that upstream. Employing the Bernoulli equation (2.19) with the computed

values of d̂c and d̄c leads, in the case of non-separated flow, to

hm = 1− d̂0d̄0 − 1
2
[T 2(d̄c − 1)2 + (d̂c/T )2 + 2d̄c]. (3.5a)

When the sill flow is separated, this relation is replaced by

hm = 1− d̂0d̄0 − 1
2

{
T 2
ec[(d̂0d̄0)

1/2 − 1]2 +
d̂0d̄0

T 2
ec

+ 2(d̂0d̄0)
1/2

}
(3.5b)

with the value of Tec from (3.4b).
Figure 4 shows a plot of hm as a function of Fd for a case of weak rotation

(w = 0.5). The relationship is given by the curve CAE, which is composed of a
number of segments indicating various states of separation. To the left of CAE, there
is no predicted upstream influence and the final flow upstream and downstream of
the obstacle is identical to the initial flow. Over the obstacle the final flow is disturbed
but does not become critical. To the right of CAE, the predicted final upstream and
downstream states have been altered by (unknown) transients. The predicted flow
over the obstacle is critical at the sill and supercritical in the lee, possibly with some
form of hydraulic jump. On CAE, the predicted flow is critical at the obstacle crest
but the upstream flow is unaltered. Along the solid segment BA′, both the initial flow
and the predicted sill flow are non-separated. Along BC, which lies at the extreme
lower right of the diagram, and is enlarged in an inset, the initial flow is attached



Hydraulic adjustment to an obstacle in a rotating channel 127

4

6

5

3

2

1

0 0.2 0.4 0.6 0.8 1.0
B C

D

0.015

0.010

0.005

0
0.90 0.95 1.00

B

C

hm

Fd

hm

Fd

E

H

G

A

A′

D

Figure 4. Regime diagram showing the predicted response in terms of the initial Froude number
Fd and the obstacle height hm, all for a channel of width w = 0.5. The curve CAE gives the critical
obstacle height, with different segments indicating different states of flow separation. The curves DB
and GH indicate various states of flow separation for completely subcritical or supercritical flows.
See the text for more details.

but the predicted critical sill flow is separated. The predicted final flow thus separates
from the left-hand wall at some point slightly upstream of the sill. To the immediate
left of BC the upstream flow is attached and subcritical and the predicted flow
over the obstacle is also subcritical but detached at the sill. In the upper portion of
the diagram corresponding to supercritical initial flow (Fd > 1) lies a segment A′E
spanning a range of Froude numbers for which the initial flow is separated. Along
sub-segment A′H the predicted sill flow is critical and attached while along HE the
sill flow is critical and separated. To the immediate left of A′H lies a wedge-shaped
region A′HG in which the predicted final flow is supercritical everywhere, separated
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Figure 5. Curves of critical obstacle height hm = hc as a function of Fd for w = 0.5 and w = 2.

upstream and downstream of the obstacle, and attached near the sill. To the left of
HE the predicted final flow is supercritical and separated everywhere.

An idea of the influence of rotation on the critical obstacle height can be gained
by inspection of figure 5, which shows the critical height curve CAE from the above
weak rotation case (w = 0.5) plotted along with the w = 2 relation. For subcritical
initial conditions rotation reduces the critical obstacle height whereas the reverse is
true when the initial flow is supercritical. Note that the two curves merge when Fd
is sufficiently large. Here the initial flow and the predicted sill flow are separated,
implying that w is no longer a factor in determining hm.

3.3. Marginal separation at the sill

Along segment BC of figure 4 the initial flow is attached and the predicted critical sill
flow separated. Reducing the sill height but keeping Fd fixed should eventually result
in a flow that is attached everywhere (and subcritical everywhere). The value of hm
at which the sill flow is marginally seperated (i.e. ds(−w/2) = 0 and w = we) will be
denoted hs. For hc > h > hs the predicted sill flow is subcritical but separated; for
h < hs the predicted sill flow is subcritical and attached.† In either case, the solutions
are not hydraulically controlled and have upstream/downstream symmetry relative
to the sill. The value of hs can be calculated by replacing the critical condition in the

steps leading to (3.5a) by the condition of marginal separation (d̄ = d̂ and Te = T )
at the sill. This procedure results in

hs = 1
2
T 2[(d̄0 − 1)2 − (d̄s − 1)2] +

d̂2
0 − d̄2

s

2T 2
+ d̄0 − d̄s, (3.6a)

where d̄s = d̂s = (d̄0d̂0)
1/2. The curve of hs vs. Fd is given by DB in the inset at the

right of figure 4. To the left of this curve the predicted flow is subcritical and attached
everywhere. In the region DBC, the flow is separated at the sill, attached upstream
and downstream of the obstacle, and subcritical everywhere.

† There may also exist a curve of marginal separation to the right of BAA′ corresponding to a
hydraulically controlled solution with marginal separation at the sill. However, the corresponding
curve cannot be calculated without some knowledge of the upstream disturbance that sets up the
controlled flow.
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Similarly, there exists a range of supercritical initial conditions for which the pre-
dicted final states are supercritical everywhere, separated upstream and downstream
of the sill, and marginally separated at the sill. As before, the obstacle height hs for
such solutions is smaller than the corresponding critical height and can be calculated
by replacing the critical condition by the condition of marginal separation, this time
in the steps leading to (3.5b). This procedure yields

hs = 1
2
(T 2

e0 − T 2)(d̄0 − 1)2 + 1
2
d̂2

0(T
−2
e0 − T−2). (3.6b)

The corresponding curve is labelled GH in figure 4. The region GHA′ contains
flows which are supercritical everywhere, separated upstream and downstream of the
obstacle, and attached at the sill, as shown by the inset. To the left of GE the predicted
final flows are supercritical and separated everywhere.

4. Temporal evolution
We now describe a numerical exploration of the parameter space defined above

using the full, two-dimensional, shallow water equations.

4.1. Numerical method

The numerical model used for this study is the same one described in Helfrich et al.
(1999) in a study of the nonlinear Rossby adjustment problem in a rotating channel.
The model solves the non-dimensional shallow water equations in flux form,

∂

∂t
(ud) +

∂

∂x
(u2d+ 1

2
d2) +

∂

∂y
(uvd)− vd+ d

∂h

∂x
= µ∇ · (d∇u), (4.1)

∂

∂t
(vd) +

∂

∂y
(v2d+ 1

2
d2) +

∂

∂x
(uvd) + ud+ d

∂h

∂y
= µ∇ · (d∇v), (4.2)

∂d

∂t
+

∂

∂x
(ud) +

∂

∂y
(vd) = 0. (4.3)

The discrete forms of mass and momentum conservation are obeyed across discon-
tinuities provided the topographic slope ∇h = 0. Note that the lateral dissipation
terms on the right-hand sides of (4.1)–(4.3) are also in flux form. The frictional terms
are not necessary for numerical stability but help to reduce dispersive oscillations
(Gibb’s phenomena) which occur in the neighbourhood of jumps.

The numerical method follows closely the technique introduced by Schär & Smith
(1993) for the non-rotating version of (4.1)–(4.3). The principal exception is the
replacement of the MPDATA algorithm for the computation of the advective fluxes
(Smolarkiewicz & Clark 1986) with a more efficient slope-limited flux-corrected
transport method described in LeVeque (1997). The numerical scheme is second-
order in space and time. The model permits the development and accurate evolution
of shocks, bores and jumps. It also allows for zero layer depth (or nearly so, since
layer depths are limited to a minimum of 10−10). The numerical model has been
tested against analytical solutions for both shock propagation and the evolution of
the contact line between wet and dry regions. More details of the model and testing
are discussed in Helfrich et al. (1999).

The channel sidewalls at x = ±w/2 are treated with slip and no-flux conditions
to keep the solutions close to the inviscid semigeostrophic theory. Orlanski (1976)
radiation conditions are used at the channel ends. The numerical results presented in
this paper use a uniform cell-centred grid with spacing in the along-channel direction
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of ∆y = 0.05. The cross-channel grid spacing and time steps range from (∆x = 0.025
and ∆t = 0.01) at w = 0.5 to (∆x = 0.05 and ∆t = 0.02) at w = 2 and 4. Numerical
convergence was tested by decreasing ∆x, ∆y and ∆t by a factor of 2 for several
test cases. Increased resolution results in slightly sharper resolution of discontinuities.
However shock and jump locations and speeds are unaffected as are regions of
vanishing layer depth. The viscous parameter is µ = 0.005, a value large enough to
help smooth the solution near discontinuities without resulting in excessive lateral
diffusion of momentum.

The experiments were started at t = 0 with the flow specified in terms of Fd
and w by the semigeostrophic solution (2.8), (2.9) as described in § 3.1. A Gaussian
topographic feature which varies in the along channel direction only,

h = h0(t) exp (−λ2y2),

is then grown into the flow. The amplitude h0(t) is increased linearly from zero to hm
from t = 0 to t = tm and is held fixed thereafter. The growth time scale is tm = 2 and
the width scale is λ = 0.5 for all experiments. The numerical domain is typically 40 or
50 units in the y-direction. In some cases the domain was extended in the y-direction
to avoid problems associated with the radiation conditions on the upstream boundary.

4.2. A tour of the numerical results

The numerical results are summarized in figures 6, 7 and 8 for channel widths
w = 0.5, 2, and 4, respectively. These widths were chosen because they enable us to
investigate the variations from narrow to relatively wide channels. In these figures the
regime curves from the semigeostrophic theory are shown along with the locations of
numerical runs. The circles indicate solutions exhibiting a lack of permanent alteration
of the original flow and the squares show cases exhibiting permanent upstream
influence. The numerical results show versions of most of the features, including
bores and jumps, that arise in Long’s original experiments. They also reveal some
features which are remarkable and unexpected. Since it is not possible to discuss each
numerical run in detail, the reader is referred to the thumbnail insets in figures 6–8
showing characteristic behaviour found in different regions of the parameter space.
These insets contain contours of the free-surface height, d(x, y, t)+h(y), at later stages
of the flow development. They illustrate the final steady flows over the topography
and, in some cases, the structure of transient features. The grey shaded regions in
some of the insets indicate areas of the channel which are ‘dry’, defined by d < 0.001.
This choice for the contact line is arbitrary, but the results are not sensitive to it. The
dashed lines are contours of the bottom topography of 1, 0.5 and 0.001 times hm.

The occurrence of upstream influence was defined by asymmetry in the along-
channel direction of the final steady flow over the topography and by a reduction in
the transport at the sill crest compared to the initial transport. For subcritical initial
flow (Fd < 1) the numerically determined transition to upstream influence agrees
reasonably well with the semigeostrophic theory for w = 0.5 and 2 (figures 6 and 7).
For w = 4 and small Fd (figure 8) the numerical results indicate upstream influence for
smaller values of hm than predicted by the theory. We did not attempt to determine
the transition points with any finer detail than indicated since the effects on symmetry
or transport are very small and take a long time to develop in the neighbourhood
of the transition. Further, the presence of friction in the model will act to break
the symmetry. The agreement extends to Fd > 1 for the narrow channel w = 0.5
(figure 6). For w = 2 and 4 (figures 7 and 8) the transition to upstream influence
occurs at moderately larger values of hm than predicted by the theory, though the
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Figure 6. Summary of the numerical results for w = 0.5. The regime curves from the semigeostrophic
theory are shown along with the locations of numerical runs. The circles indicate no permanent
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general behaviour of the transition as a function of Fd follows the theory for the few
values of Fd > 1 that have been investigated.

The disagreement between the numerically determined transitions and the semigeo-
strophic theory with increasing channel width is not surprising. In narrow channels
the confinement provided by the walls suppresses cross-channel accelerations and
thus the along-channel flow should remain nearly geostrophic as required for the
semigeostrophic approximation to be valid. For wider channels this effect is weakened
and large cross-channel accelerations occur over the sill in the initial adjustment
phase leading to departure from the semigeostrophic prediction. These effects were
also observed in the dam break problem studied by Helfrich et al. (1999). Non-
conservation of potential vorticity could also affect the value of the critical height.
The numerical model includes weak lateral viscosity and thus does not conserve
potential vorticity following fluid parcels as the analytical model does. Fluid parcels
which pass through shocks can also have their potential vorticity altered due to the
implicit energy loss associated with the shock.
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Figure 7. Same as figure 6 except w = 2. Dashing of the critical obstacle height curve indicates
those values of Fd for which the initial flow is separated. The thick horizontal bar overlaid on the
critical obstacle height curve indicates the value of Fd above which the predicted critical sill flow is
separated from the left wall.

4.2.1. Case w = 0.5

We begin the discussion of the flow evolution by examing the case w = 0.5, as
summarized in figure 6. Despite the narrowness of this channel, rotation can be quite
important. First, consider some examples for which there is no predicted upstream
influence (hm < hc) as illustrated by the insets on the left-hand side of figure 6.
Subcritical conditions give rise to an acceleration of the flow accompanied by a
deflection of streamlines over the obstacle towards the right-hand wall (e.g. Fd = 0.5,
hm = 0.1). The opposite occurs for supercritical initial conditions, as exemplified
by the case (Fd = 1.5, hm = 0.04). If Fd is large enough the initial supercritical
flow is separated and the corresponding final steady states may either be completely
separated (Fd = 2.5, hm = 0.1) or separated away from but attached near the sill
(Fd = 2.5, hm = 0.3). This last case is shown in greater detail in figure 9. At t = 10 the
disturbance generated by the introduction of the topography is evident immediately
downstream of the sill. It consists of two waves which propagate downstream. The
first is the faster Kelvin wave, centred at about y = 15, and the second is the slower
frontal wave (Stern 1980), centred at about y = 8. Note that in linear wave dynamics
the Kelvin wave should have no expression on the contact line. However, in this fully
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Figure 8. Same as figure 6 except w = 4.

nonlinear example the Kelvin wave does affect the front position, albeit weakly. By
t = 20 the Kelvin wave has propagated out of the domain and the frontal wave (near
y = 17) has steepened, nearly to the point where the stream width we is discontinuous.
The result is a transient that looks very much like a family of shock waves discussed
by Nof (1984) in connection with a zero-potential-vorticity, separated coastal flow.
The last panel at t = 80 shows the (nearly) symmetric final steady state.

As noted above, upstream influence for the case w = 0.5 generally occurs where
predicted (hm > hc). When the initial flow is attached, the disturbance that alters
the upstream state takes the form of a ‘Kelvin-wave’ bore. Figure 10 shows an
example of this process for Fd = 0.5, hm = 0.2. At t = 10 both upstream- and
downstream-propagating Kelvin waves are evident on each side of the topography.
The characteristic trapping of the Kelvin waves to the sidewalls is weakly apparent
in this narrow channel. By t = 30 the downstream wave has left the domain, the
upstream wave has steepened into a bore, and a hydraulic jump has formed on the
downstream side of the obstacle. The jump remains over the topography in the final
steady flow t = 50. The bottom panel of figure 10 shows Fd from (2.16) calculated
from the numerical solution at t = 30. The flow makes a transition from subcritical to
supercritical over the sill and returns to subcritical across the downstream jump. Also
note how Fd decreases across the upstream bore. Generally speaking, the solution is
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Figure 9. Numerical results for Fd = 2.5, hm = 0.3 and w = 0.5. The panels show contours of
the free surface height (d(x, y, t) + h(y)) at the times indicated. The shaded regions indicate those
portions of the channel which are ‘dry’ (defined by d < 0.001). The dashed lines are the 1, 0.5 and
0.001 times hm contours of the bottom topography.

similar to the non-rotating case. The most apparent sign of rotation is the deflection
towards the right-hand wall of the supercritical flow in the lee of the obstacle.

As in the non-rotating case, low values of the initial Fd favour stationary hydraulic
jumps whereas higher values tend to cause the jumps to move downstream. The latter
is illustrated by the inset in figure 6 for for Fd = 1 and hm = 0.2, where the former
hydraulic jump is shown as a discontinuity moving away from the topography in the
downstream direction. With no rotation the boundary in the (hm, Fd)-plane separating
regimes with and without jumps can be constructed analytically using shock joining
theory. This boundary is given by the curve AD in figure 1. A similar calculation is
much more difficult in the rotating case due to the unavailability of a satisfactory
shock joining theory (Pratt 1983; Nof 1986).

There are also some instances where the supercritical flow downstream of the sill
separates from the left-hand wall, a behaviour that has important ramifications for
downstream disturbances. As an example, consider the evolution for Fd = 1.5 and
hm = 0.5, as shown in figure 11. At t = 10 the downstream-propagating Kelvin
wave and upstream-propagating bore are evident. The flow approaching the sill is
accelerated and veers toward the right-hand wall downstream of the crest, leaving a
small patch of dry channel near the left-hand wall. The transition back to attached
flow near y = 7 occurs as an abrupt expansion (located near y = 16 at t = 30). This
transition is swept down the channel, enlarging the dry region (t = 30) and ultimately
leaving behind a detached supercritical flow in the lee of the topography (t = 50).
The characteristic speed c has been calculated from (2.15) at points slightly upstream
of and slightly downstream of the abrupt transition. On the upstream side, where the
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Figure 10. Same as figure 9, except Fd = 0.5, hm = 0.2. The bottom panel shows Fd
as a function of y at t = 30.

flow is separated and frontal wave dynamics apply, c is positive and greater than on
the downstream side, where the flow is attached and Kelvin wave dynamics apply.
Thus, linear disturbances generated just upstream of the transition overtake those
generated just downstream, indicating that the transition is indeed a shock.

Flow separation in the lee of the obstacle is also observed for subcritical initial
conditions and large values of hm. In cases where hydraulic jumps occur, the usual
abrupt change in depth is replaced by an abrupt change in the width of the stream.
That is, the jump is much like the transition in figure 11, but with the feature
stationary in the lee of the topography. An example is shown in figure 12(a) (for
Fd = 0.5, hm = 0.8) where a small shaded area indicating dry bottom appears in
1 < y < 2.3. The separated region terminates in a sudden expansion and resulting
reattachment of the flow, downstream of which is a zone of cyclonic recirculation.
Figure 12(b) shows a plot of Fd from (2.16) for this particular example. Also shown
is the layer depth on the left-hand wall, d(−w/2, y). The transition from detached
(d(−w/2, y) = 0) to attached flow near y = 2.3 coincides with the drop of Fd from
supercritical to subcritical. This ‘transverse’ jump and trailing recirculation was also
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Figure 11. Same as figure 9, except Fd = 1.5, hm = 0.5.

observed in laboratory experiments by Pratt (1987). In both the stationary and moving
version (i.e. the ‘transverse’ bore) one of the end states is always attached the left-hand
wall. The dynamics and temporal development of transverse jumps and bores are
discussed in greater detail below.

When the initial flow is separated, upstream influence occurs in an unexpected
manner. The leading portion of the upstream-moving disturbance is a rarefying
intrusion attached to the left-hand wall as illustrated in the inset in figure 6 for
Fd = 2.5 and hm = 0.5. In this example the intrusion is followed by a surge which
leaves behind attached flow upstream of the sill. The surge results in a rapid increase
in depth; however, the front is smooth and behaves like a rarefaction rather than a
shock. We will return to this interesting situation below.

The last few examples show that rotation can lead to remarkable effects even when
w is moderately small. These effects occur where high velocities are present, either due
to supercritical initial conditions or because high velocities are induced in the lee of
large obstacles. The high velocities lead to strong tilts in the free surface, sometimes
resulting in separation of the flow. The Rossby radius of deformation based on the
local depth is tiny near the edge of separated current and it is no surprise that
inherently rotational features such as the transverse hydraulic jump arise under these
conditions.

A final remark about the case w = 0.5 is that we have not been able to verify
the subcritical flow which briefly detaches over the sill (predicted in region DBC in
figure 4). Nor have we been able to do so for other values of w. More significantly,
the hydraulically controlled flows to the immediate right of BC have attached flow at
the sill, despite our prediction to the contrary. This subject is revisited in § 5.
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Figure 12. (a) Surface elevation contours for the steady flow that arises in the case Fd = 0.5,
hm = 0.8 and w = 0.5. A transverse hydraulic jump lies at y ≈ 2.3. (b) Plot of Fd (solid line) and
d(−w/2, y) (dashed line) for the flow in (a). The transition from supercritical to subcritical flow near
y = 2.3 coincides with the lateral expansion and reattachment of the flow to the left-hand wall.

4.2.2. Cases w = 2 and w = 4

The regime diagrams for the cases w = 2 and w = 4 are shown in figures 7 and 8.
Separation of the initial flow now occurs for nearly all Fd > 1, as indicated by dashing
of the critical obstacle height curve. The region analogous to A′HG of figure 4 is
indistinguishably thin in each of figures 7 and 8, and therefore the upper boundary
of this region is indicated by a horizontal bar. This bar marks that value of Fd above
which the predicted critical sill flow is separated.

An immediate consequence of the greater w is that it shrinks the range of Fd and
hm over which the flow remains attached at all sections. Upstream influence in cases
of complete attachment still occurs through the propagation of a ‘Kelvin wave’ bore.
An example for Fd = 0.5, hm = 0.2 and w = 2 is shown in figure 13. In this case both
an upstream bore and a downstream hydraulic jump are generated. In contrast to the
case w = 0.5 (cf. figure 10) neither the bore nor the jump extend across the channel,
but rather are strongly trapped to the left-hand wall. The downstream jump has a
lateral scale of only about 0.25, or half of a deformation radius. These flows resemble
the solutions computed by Pratt (1983). Downstream of the jump a region of cyclonic
recirculation is generated. This region appears to expand in the downstream direction
indefinitely.

The amplitude of the ‘Kelvin wave’ jump remains small as long as hm is not greatly
exceeded. In fact cases such as (Fd = 0.5, hm = 0.5) and (Fd = 1, hm = 0.1) of figure 7
show very little evidence of jumps, at least in the free-surface elevation. These flows
also contain cyclonic recirculations in the lee of the obstacle. Some of the details of
the transition from supercritical to subcritical flow in cases such as these are discussed
in the next section.

When hm is increased well beyond the critical value the lee flow detaches, then
reattaches over the topography to form a transverse jump as discussed above. An
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Figure 13. Same as figure 9, but now for the case w = 2, and Fd = 0.5, hm = 0.2.

example of the development of this flow is shown in figure 14 for Fd = 1, hm = 0.5
and w = 2. At t = 10 a large dry region has formed on the downstream side of the
topography. This zone splits into a small wedge of dry channel and a large, intense
cyclonic eddy with a dry centre (t = 30). The outcropping in the eddy fills in by
t = 50 to form an expanding zone of cyclonic recirculation and the transverse jump
remains fixed to the topography.

For supercritical initial conditions the flow is separated for all Froude numbers save
those close to unity. Figure 15 shows the evolving flow for a separated supercritical case
with Fd = 1.5, hm = 0.4 and w = 2. The predicted critical flow at the sill is attached
in this case. Upstream influence occurs in the form of bifurcation of the initial
current over the topography. A portion of the incident flow is diverted back towards
negative y, forming a separated, rarefying intrusion along the left-hand wall, while
the rest continues over the topography. The original current is narrow enough that
the upstream intrusion does not contact the original current in the neighbourhood
immediately upstream of the topography. The final steady state upstream of the
topography consists of two opposite, separated currents. Remarkably, there is no
upstream influence in the original current. However, the net flux towards the sill is
reduced by the diversion of fluid into the left-wall intrusion. This case contrasts with
the example discussed earlier for w = 0.5 where the upstream intrusion was followed
by a surge occupying the full width of the channel. Which situation occurs depends
upon the width of the initial current, we compared to w. We have not fully explored
the change in behaviour, but the full-width surge occurs for we/w = O(1) while
the detached intrusion occurs for small values of we/w. Over the upstream face of
the obstacle the flow fills the channel and becomes subcritical. This subcritical flow
becomes critical at the sill and supercritical (and eventually detached) downstream.
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Figure 14. Same as figure 13, except Fd = 1, hm = 0.5.

A frontal wave is observed further downstream (y = 9 at t = 20). Note the ejection
of a blob of fluid (near y = 12 at t = 40) as a result of steepening of this wave.

The branching of the stream described above (near y = −2.5 at t = 80 in figure 15) is
essentially a dissipationless shock. The upstream end state consists of two supercritical
streams, both separated, while the downstream end state consists of an attached
subcritical stream. Given one end state, it should be possible to predict the other
by invoking conservation of mass, momentum and potential vorticity across the
branching section. This exercise has not been pursued.

We have also performed calculations based on large enough values Fd so that the
predicted critical sill flow is separated. Such values lie above the horizontal bar in
figures 7 and 8. Significantly, these settings also result in left-wall intrusions of the
type just discussed and in attached flow at the sill. An example is shown in the figure 8
inset for Fd = 1.5, hm = 0.4 and w = 4. In no cases have we observed sill flows which
are critical and separated at the sill.

In the case of the widest channel considered w = 4, the flow responds much
as in the w = 2 case. However, one qualitative difference, evident for flows with
Fd < 0.5, is the appearance of an anticyclonic recirculation cell over the sill. This
feature arose regardless of the occurrence of upstream influence as illustrated by the
two insets in figure 8 for Fd = 0.1 and hm = 0.2 and 0.45. In both cases the velocity
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Figure 15. Same as figure 13, except Fd = 1.5, hm = 0.4.

on the right-hand wall at the sill crest v(w/2, 0) < 0. The recirculation cell occupies
about three-quarters of the channel width, forcing the fluid which crosses the sill
and continues downstream to do so in a narrow band adjacent to the left-hand wall.
The along-channel extent of the recirculation is comparable to the length of the
topography.

5. Discussion
5.1. Failure of hydraulic control in separated sill flows

Both of the poineering models of steady, hydraulically driven flow in rotating channels
(Whitehead et al. 1974 and Gill 1977) describe solutions which are hydraulically
critical and separated at the controlling sill or narrows. Examples can be found in
Gill’s (1977) figures 6 and 7, and 9(d). Surprisingly, laboratory experiments by Shen
(1981) and Pratt (1987) failed to produce such flows, even though attempts were made
to do so. Whitehead et al. (1974) claimed to have achieved separated and hydraulically
controlled flow in the laboratory, but their ‘sill’ was actually a finite-length segment of
rectangular channel over which the bottom elevation and width is constant. Although
the flow is separated in the downstream portion of this segment, it is not at the
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upstream portion. The exact section of critical flow and its state of separation are
unknown.

It is significant that our numerical simulations have failed to produce hydraulically
controlled flows that are separated at the sill section. Such states might have been
expected as a result of runs such as Fd = 1.5 and hm = 0.4 of figure 8, in which
the initial flow is separated and the predicted sill flow is also separated. However,
the obstacle causes deflection of the approaching flow to the left-hand wall resulting
in the formation of an intrusion as shown in figure 15. Over the sill itself, the flow
becomes attached. Other cases where the sill flow is predicted to be separated and
critical correspond to very subcritical, attached initial flows and large hm (as in the
region just to the right of curve BC in figure 4). Although the numerical experiments
confirm that the flow is controlled, it remains attached at the sill.

These findings seem to suggest the presence of an instability that acts when a
separated flow is critical or subcritical. However, Paldor (1983) has shown that
separated currents of the type under discussion are stable, at least in the limit of zero
potential vorticity, provided that the fluid depth along the right-hand wall remains
non-zero. So there does not yet appear to be a clear connection between inviscid
instability and the lack of separated critical flow in the numerical experiments.

A second possible cause is the apparent inability of bores in separated flows to
propagate upstream. Nof (1984) has discussed this problem in connection with a
model of shock waves in a separated, zero-potential-vorticity flow. Although there
may be some dynamical inconsistencies in his solutions due to an assumption of
potential vorticity conservation through the shock, his results are very suggestive. For
example, it can be shown from the zero-potentail-vorticity depth and velocity profiles
that the total volume transport across any section increases as the width of the stream
increases. This property holds as long as the velocity remains positive v > 0 at all
x. Therefore a bore having a narrow upstream, and wide downstream, end state will
have larger volume transport across the downstream end state. If the bore translates
steadily, conservation of mass then requires that it propagate in the +y-direction. In
the figure 15 solution at t = 10, the separated initial flow collides with the obstacle,
resulting in a widening of the current. However, an upstream disturbance is not
generated until contact with the left-hand wall is made–perhaps due to the reasons
just mentioned.†

5.2. The distribution of dissipation in an attached jump

We have observed that a hydraulic jump forming under attached conditions resembles
a breaking Kelvin wave. The jump amplitude is largest at the left-hand wall and decays
away from that wall over a distance ≈Ld. It would appear that such a jump would
lead to dissipation (and overturning, if such was explicit in the model) primarily along
the left-hand wall. The actual distribution of dissipation can be more subtle and we
now show this using an example of a highly localized jump.

An enlarged picture of the surface elevation contours for the case (Fd = 0.5, hm = 0.5
and w = 2) is shown in figure 16(a). The free surface is smooth, except for a weak
hydraulic jump along the left-hand wall near y = 1. Very little transport (about 1

8
of

the total) actually passes through the jump. The usual recirculation exists downstream.
The jump appears more clearly in figures 16(b) and 16(c), where contours of energy

† If one allows negative v to form in the downstream end state, then that state need no longer carry
greater transport than the upstream end state. In this case, a separated and upstream-propagating
bore would not violate mass conservation. Whether such a disturbance is dynamically possible is
unknown.
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Figure 16. Details of the super- to subcritical transitions for the inset in figure 7 (w = 2 at Fd = 0.5
and hm = 0.5. (a) Contours of the free-surface elevation d + h. (b) Contours of the dissipation
µu · (∇ · (d∇u)). The contour interval is 1.25 × 10−2. (c) Contours of the transport streamfunction
(dashed lines) overlaid with the dissipation contours from above. (d) The Froude number Fd based
on equation (2.16) (solid line) and FS based on equation (5.2) (dashed line). The definition of FS is
invalid downstream of the jump (at y ≈ 1) due to velocity reversals.

dissipation (µu · (∇ · (d∇u))) and dissipation overlaid by streamlines are plotted. Two
regions of high dissipation can be distinguished, one coincident with the jump and
the second further downstream and closer to the right-hand wall. This second region
is one of high velocity and shear (∂v/∂x), formed where the throughflow is squeezed
along the right-hand wall by the recirculation. The maximum dissipation values in
the latter region are comparable to those in the jump region. In addition the region
of high dissipation due to shear is much larger than the jump region. Clearly, all fluid
experiences dissipation as the jump and recirculation is passed.
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5.3. Breakdown of semigeostrophic theory

Large channel widths permit the formation of larger cross-channel velocities, leading
the departures from semigeostrophic behaviour. One way to document such departures
is through the semigeostrophic Froude number. Figure 16(d) contains a longitudinal
plot (solid line) of the constant-potential-vorticity, semigeostrophic Froude (2.16)
for the flow shown frames (a–c). Suprisingly Fd never exceeds unity, reaching a
maximum value ≈ 0.95 just upstream of the hydraulic jump. The value at the sill
is considerably lower. The fact that this example clearly exhibits upstream influence
(and that something like a hydraulic jump exists) suggests Fd should equal 1 at the
sill and exceed 1 immediately downstream. Apparently (2.16) is no longer a reliable
definition of the Froude number. As shown in figure 16(c), significant cross-channel
velocities exist near and slightly downstream of the sill, suggesting that the failure
of (2.16) may be due to a loss of semigeostrophy. This failure could also be due to
potential-vorticity non-uniformity that might have developed in the flow field.

To test the second hypothesis, we have formulated a more general Froude number
that is valid for non-uniform potential-vorticity flow but requires semigeostrophic
conditions. First consider the generalized critical condition for semigeostrophic flow
derived by Stern (1974): ∫ w/2

−w/2
(v2d)−1

(
1− v2

d

)
dx = 0. (5.1)

The derivation of (5.1) is valid only when d remains positive and v remains single
signed in −w/2 > y > w/2. From this definition we can formulate a generalized
Froude number Fs, defined by

F2
S =

∫ w/2

−w/2
d−2 dx

/∫ w/2

−w/2
(v2d)−1 dx, (5.2)

noting that FS = 1 when the flow is hydraulically critical and FS → 0 as v → 0.
Figure 16(d) contains a plot (the dashed line) of FS (y) along with Fd (solid line).
Although FS does exceed unity on the downstream face of the obstacle, its value
(≈ 0.4) at the sill is even lower than the value of Fd there. (The definition of FS (y)
downstream of the transverse jump breaks down due to flow reversals.) This indicates
that the breakdown in our measure of the Froude number is due to the failure of
the semigeostrophic approximation. This conclusion is supported by the behaviour
of the Froude number in a flow regime with the same obstacle height but a narrower
channel (w = 0.5, bottom panel of figure 10). Here Fd reaches and exceeds 1 in the
expected places.

In addition to the failure of (2.16) to measure the true Froude number of the flow,
there are other indications of breakdown of the semigeostrophic approximation. The
value of the critical obstacle height hc predicted by semigeostrophic theory agrees
well with the observed values for our narrowest channel (w = 0.5). As w increases the
agreement grows worse: the predicted hc overestimates the actual hc for subcritical
initial flows and underestimates it for supercritical initial flows. This trend is probably
a result of the fact that large cross-channel velocities are allowed to develop once
the channel width exceeds a deformation radius. Despite these differences the general
shape of the curve of hc as a function of Fd remains as predicted.

More striking breakdowns in the semigeostrophic approximation occur within
individual features. Perhaps the most dramatic is the grounding or separation of the
flow (d→ 0) in the interior of the stream, as occurs at the bifurcation of the upstream
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flow (t = 20, 40, and 80 in figure 15 near y = −2.5), at the detaching eddy (near
y = 14 and t = 40 of the same figure), and at the cyclonic vortex with the ‘dry’
interior (t = 30 in figure 14 near y = 5.0). Such behaviour is clearly in violation of
Gill’s (1977) theorem proscribing the vanishing of d at a point where ∂2d/∂x2 > 0
in any semigeostrophic flow (see § 2). Not surprisingly, semigeostrophic theory also
fails in the vicinity of jumps, bores and other transients exhibiting rapid transitions
in the y-direction. It is not necessary that w be large for such violations to occur, as
evidenced by the presence of transverse jumps and bores when w = 0.5 (figure 6).

5.4. Conservation of properties across transverse jumps

A major deficiency in current rotating hydraulic theory is the lack of a satisfactory
shock-joining theory. Consider two sections A and B located slightly upstream and
downstream of a stationary jump and suppose that the flow at A is known. Then the
object of shock-joining theory is to predict the flow at B. One approach is to assume
that potential vorticity is conserved across the jump, so that the potential vorticity
distribution qB(ψ) at B is known. If the flow there is semigeostrophic, then the depth
obeys the equation

∂2d

∂x2
− qB(ψ)d = −1, (5.3)

which is just the generalization of (2.7) for arbitrary potential vorticity. In principle,
(5.3) could be solved at B yielding a depth profile with two unknown integration
constants. Equating the cross-sectionally integrated volume flux vd and flow force
v2d+ 1

2
d2 at A and B would then yield the values of these constants.

Attempts by Pratt (1983) and Nof (1986) to apply this method to rotating shocks
in attached flows have met with two difficulties. First, the discontinuity in depth
or width is generally bordered by a non-semigeostrophic region extending several
deformation radii upstream and/or downstream. (Further examples arise in recent
models of Fedorov & Melville 1996 and Helfrich et al. 1999.) The bounding sections A
and B must be situated outside these regions, making the length of the shock several
deformation radii. Over this distance, continuous momentum sources such as bottom
friction or Coriolis acceleration might be large enough to wreck conservation of flow
force between A and B. A second difficulty is that potential vorticity is generally not
conserved across the depth discontinuity. This property that can be deduced from the
relation between the Bernoulli function and potential vorticity

dB

dψ
= q.

Jumps such as the one shown in figure 16(b) clearly experience different energy
dissipation levels along different streamlines, and this implies that q must change
along those streamlines. Therefore, qB(ψ) is generally unknown. Further examples
are discussed by Pratt (1983), Nof (1986), Schär & Smith (1993), and Helfrich et al.
(1999).

It is not clear that these difficulties apply to a transverse hydraulic jump. For one
thing, transverse jumps experience no sudden depth change and therefore contain
no obvious source of energy dissipation. However, a closer examination reveals that
neither potential vorticity nor flow force is generally conserved. Consider the jump
located near y = 1.6 in figure 17(a), for which the ageostrophic region extends to
y ≈ 7. We therefore situate section A at y = 1.6 and section B at y = 7, as shown in
the figure. This interval contains the upstream portion of cyclonic recirculation, an
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Figure 17. (a) Contours of surface elevation in the vicinity of the transverse hydraulic jump for
the run in figure 14 (w = 2, Fd = 1, and hm = 0.5) at t = 70. The sill of the obstacle lies at y = 0.
(b) Potential vorticity distribution for the flow in (a). (c) q(ψ) distributions at sections A and B as
marked in (a).

area clearly non-semigeostrophic [v/u ∼ O(1)]. The y-momentum budget, formulated
by integrating (4.2) over the area between sections A and B, may be written as

[M]BA = IC + IT + [D]BA, (5.4)

where

M =

∫ w/2

−w/2
(v2d+ 1

2
d2) dx, IC = −

∫∫
R

(ud) dσ, IT = −
∫∫

R

d
∂h

∂y
dσ,

D = ν

∫ w/2

−w/2
d
∂v

∂y
dx, and [( )]BA = ( )B − ( )A.

We find MA = 0.202 and MB = 0.260, so that there is a 29% gain in flow force across
the jump. This gain is provided by the topographic form drag IT = 0.107, which is
partially counteracted by the term IC = 0.045 resulting from the Coriolis acceleration
due to the cross-channel flow in the recirculation. The dissipation term D is negligible.

Contours of potential vorticity are shown in figure 17(b) and the distributions q(ψ)
at sections A and B are shown in figure 17(c). It is clear from both panels that q(ψ)
is very different at the two sections. Starting from the left-hand edge (ψ = 0) in
figure 17(c), corresponding to the right-hand wall of the channel, we see that q(ψ)
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Figure 18. (a) Surface height contours for the case (w = 4, Fd = 0.1, and hc = 0.45) in which a
recirculation exists over the sill. (b) Potential vorticity and streamfunction profiles at the sill (y = 0).

at both sections increases gradually with increasing ψ until about ψ ≈ 0.18, where
qA(ψ) suddenly grows off scale. This ψ value marks the free edge of the stream, where
q is likely to be sensitive to the dissipation used in the model. Following qB(ψ) to
higher ψ values brings one into the recirculating fluid at section B. The maximum
value of qB(ψ) at ψ ≈ 0.21 corresponds to the centre of the recirculation. Following
the qB(ψ) curve further leads back to lower values of ψ, and lower and more uniform
values of qB , corresponding to fluid along the left-hand wall. In summary differences
in potential vorticity from A to B arise due to high dissipation rates near the free
edge of the flow at A and due to the occurrence of ψ values at B, associated with
reirculating fluid, that lie outside the ψ range at A.

The discouraging conclusion, then, is that transverse shocks experience the same
non-conservation of flow force and potential vorticity that prevent a simple treatment
of rotating shocks in attached flows.

5.5. Upstream recirculations

Although semigeostrophic theory admits solutions with closed recirculations, the
location of the recirculations may be restricted by the assumed potential vorticity
distribution. In Gill’s (1977) uniform-potential-vorticity model, for example, it can
be shown that the flow at any critical section must be unidirectional. Recirculations
must therefore occur away from control sections. Borenäs & Whitehead (1998) did
find analytical and laboratory solutions with upstream recirculation, but in all cases
the recirculation zone terminates at, or before, the sill crest. The potential vorticity
distribution in their laboratory flows were not known. Their analytical solutions had
uniform potential vorticity outside the recirculation and either (the same) uniform
potential vorticity or stagnant conditions inside. On the other hand, flows with non-
uniform potential vorticity may contain any number of zero crossings at a control
section and examples of this behaviour have been given by Pratt & Armi (1987).
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Figure 18(a) shows the recirculation that forms over the obstacle for the case
(w = 4, Fd = 0.1, and hc = 0.45). (The flow at this stage is still undergoing a slow
temporal evolution, perhaps due to potential vorticity dynamics.) Recirculating fluid
clearly exists at the sill section. Inspection of the potential vorticity distribution across
the sill confirms that it is non-uniform. Figure 18(b) shows profiles of both q and
ψ at the sill, the observer facing downstream. The boundaries of the recirculation
correspond to ψ = 0, which occurs at the right-hand wall x = 2 and at x ≈ −1. Within
these boundaries q is roughly constant, in agreement with conditions conjectured by
Borenäs & Whitehead (1998). To the left of the recirculation the potential vorticity is
much higher.

5.6. Comparison with the case of lateral uniformity

Baines & Leonard (1989, hereafter referred to as BL) have presented solutions de-
scribing the adjustment of a uniform stream (constant v0 and d0, u0 = 0) to a ridge on
an infinite f-plane.† The topography is uniform in x and therefore the flow remains
x-independent for all time. There are some important qualitative differences between
the t → ∞ states found by BL and in the present experiment. The most striking
is that the upstream effects of the ridge are confined to a finite distance from the
topography. When the ridge height exceeds a critical value, an upstream bore is
generated as in the present experiment. However, the pressure gradient due to the
surface slope [∂(d + h)/∂y] in the bore gives rise to a geostrophic current (u < 0)
parallel to the ridge. In our channel problem this current would collide with the
left-hand wall and generate a Kelvin wave, the influence of which would be felt far
upstream. In BL the current continues unimpeded. As the bore travels upstream its
amplitude and speed are reduced and eventually the bore becomes stationary. The
t → ∞ solution upstream of the obstacle consists of this arrested bore, followed by
a band of transverse flow. These features occur within a deformation radius of the
upstream edge of the obstacle; further upstream the flow remains undisturbed.

A second departure from the present problem is in the nature of the critical
condition. Although Kelvin waves are not possible in the BL model, there is still a
critical condition with respect to short inertia–gravity waves. The authors show that
this condition must occur where u = −∂h/∂y, in contrast with the present criterion
∂h/∂y = 0.

6. Summary
One of the primary aims of this work has been to establish a set of regime

diagrams for a rotating version of Long’s experiment with a homogeneous fluid.
Although lack of a satisfactory joining theory for rotating shocks has prevented
prediction of all of the corresponding regime boundaries, we have been able to find
some. These include the curve of critical obstacle height hc(Fd, w) as well as other
curves separating different states of flow separation. All boundary predictions are
based on semigeostrophic theory for uniform-potential-vorticity flow. The regime
diagrams also include insets showing representative examples based on numerical
integration of the full, two-dimensional shallow water equations. It is hoped that the
results (figures 6, 7, and 8) will be helpful to investigators who wish to learn about
rotating hydraulics.

† In order to keep the initial flow uniform and geostrophically balanced, the authors add an
externally imposed pressure gradient in the x-direction.
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In reviewing figures 6–8, most of the examples of hydraulically controlled flow can
be placed in two broad classes. The first includes flows that remain attached to the
left-hand wall at each y. The time-dependent adjustment leading to the establishment
of a controlled flow in this regime is similar to what takes place in Long’s experiments,
although the transients and the hydraulic jumps become trapped to sidewalls. One
might collectively refer to these examples as the Kelvin-wave regime. This regime
generally occurs for small-to-moderate Fd, hm, and w. The second category includes
flows that are separated from the left-hand wall over some y. Significantly, the
sill flow in all such cases remains attached. Further, all upstream disturbances and
hydraulic jumps with separated upstream flow have attached downstream end states.
Both Kelvin-wave and frontal-wave dynamics are important in these examples, which
might collectively be referred to as a ‘hybrid’ regime. It is favoured by large hm, large
Fd, and/or large w.

Significantly, our numerical simulations suggest that it is not possible to remove the
left-hand wall from the problem and still be able to realize a hydraulically controlled
flow. Even when the initial flow is separated and w is large, the critical sill flow remains
attached to the left-hand wall. In addition, upstream influence for large w is trans-
mitted in the form of an intrusion that travels along the left-hand wall. These results
imply that a ‘coastal’ version of our current, set up by moving the left-hand wall to
infinity, cannot be hydraulically controlled nor have a stationary hydraulic jump. One
caveat should be mentioned: by restricting the initial conditions so as to require zero
volume transport in the left-hand boundary (§ 3.1) all separated initial flows are su-
percritical. There is another family of separated but subcritical initial flows that could
conceivably be subject to upstream influence without the aid of the left-hand wall.

For some of the interesting features found in our simulations, no concrete oceano-
graphic observations have been reported. Such features include the Kelvin-wave
hydraulic jump (figure 16), the transverse hydraulic jump (figures 14 and 17), and the
bifurcation of the flow approaching the sill with resulting leakage back into the up-
stream part of the channel (figure 15). However, it is notoriously difficult to make ob-
servation in deep channels such as the Denmark Strait and Faroe Bank Channel. These
calculations should help investigators determine where to look and what to look for.
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